CALCULATION OF AUTOOSCILLATIONS OF THE TYPE
OF AZIMUTHAL WAVES OCCURRING AT LOSS OF
STABILITY OF FLOW OF A VISCOUS FLUID BETWEEN
CONCENTRIC CYLINDERS ROTATING IN OPPOSITE
DIRECTIONS

A. L. Urintsev UDC 532.516

Starting with the Navier—Stokes equation we use the Lyapunov—Schmidt method to investigate
the nature of the loss of stability of Couette flow between cylinders as the Reynolds number
passes through its critical value. We consider the rotation of the cylinders in opposite direc-
tions with the ratio of the angular velocities such that the role of the most dangerous distur-
bances passes over from rotationally symmetric to nonrotationally symmetric disturbances.
Branching nonstationary secondary flows (autooscillations) are found in the form of azimuthal
waves; the longitudinal wave number ¢ and the azimuthal wave number m are assumed given.
The amplitude of autooscillations and the wave velocity are calculated for m =1, and it is
shown that depending on the value of o both weak excitation of stable and strong excitation of
unstable autooscillations are possible and the wave number o for which the critical Reynolds
number is a minimum corresponds to a stable wave regime in the supercritical region. The
linear problem of the stability of the circular flow of a viscous fluid with respect to nonrota-
tionally symmetric disturbances is discussed in [1-3]. Di Prima [1] solved the problem
numerically by the Galerkin method when the gap is small and the cylinders rotate in the same
direction. Di Prima's analysis is extended in [2] to cylinders rotating in opposite directions,
and in [3] it is extended to gaps which are not small. The nonlinear stability problem is treated
in [4], where for fixed @ =3 and cylinders rotating in opposite directions the axisymmetric
stationary secondary flow — the Taylor vortex — is calculated. The formation of azimuthal
waves in the fluid between the cylinders was studied experimentally in detail by Coles [5].

1, Statement of the Problem

Suppose a viscous incompressible fluid of density p and kinematic viscosity v fills the space between
two coaxial cylinders of radii r; and 1, (ry < ry) which rotate with angular velocities @; and Q,, respec-
tively. We take as units of length, time, and mass the quantities ry —ry, (r; — 14 Yfv, and (ry — )%/ p, and
introduce the Reynolds number Re = Qqr; (r, — T{)/v and the dimensionless parameters p = ,/Q and £ =
r4/(ry — ry). The solution of the Gromek— Lamb form of the dimensionless equations of motion of the fluid

Vi v = gradh +rote =0, =rotv,divy =0 (1.1)
in cylindrical coordinates r, 6, z is 7
v =ReV,0 =ReQ,r =hy(r)= 0,5V - ) Viirdr,

V= (0, Ve, 0), @ =(0,0,9), Vo=ar+bir, Q= 2a, (1.2)
a= (! - BH¥E— B/(1 +28), b = E(1 — p)(1 -+ B - 28§),

corresponding to laminar circular Couette flow. Since we are interested in flows which are periodic in time,
branching from the solution (1.2), we set

v =ReV +v(r, 1,2, 0 =Re®Q ‘Lo, 1,2, b =h + k7, z)
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in (1.1), where 7 =6 — ct and ¢ is the unknown velocity of azimuthal waves, and replace & 86 by &/ o7 and
/ot by —cod/ o7 to obtain the nonlinear eigenvalue problem

—evy — Re (Qxv —oxV) +grad 4 —~ rot @ = v X0, (1.3)
o =rotv, divvy =0,

whose nontrivial solution must satisfy the nonslip condition v=0 at r= ¢ and r =1 + { and have a zero
velocity flux through the cross section of the cylindrical gap, We seek a solutionhaving aperiod27/m in Tand 27/
inz, where m and a arethe given azimuthal and longitudinal wave numbers, for which vy, vg, h, and wz are
even and v,, wr, and wg are odd functions of z. The remaining solutions can be obtained by shifting the ori-
gin along the axis of the cylinders.

2. The Lyapunov-Schmidt Method. Separation of Variables

We calculate autooscillating secondary flow by using the Lyapunov—Schmidt method {6, 7]. Setting

e

(v, h,0) = 3 e (v, hyy0,), ¢ = Regeg & +
n=1

gﬁcn (2-1)
1

Thay

in (1.3), where € = (Re — Reo)i/z, Re, is the critical Reynolds number, and c; is the velocity of azimuthal
waves relative to the rotating inner cylinder calculated from the linear theory, we obtain a set of linear
‘problems of the form

Reg(—cy Evpr + Qv — 0, %X V) - grad b, -+ rot 0, = £a, (2-2)

0, =rot v, divv, =0, v, =0 (r = §, 1+§),

where the f, are the known right-hand sides. In particular,

B, =0, f, = v;Xo; + cvqr, B3 = avar + 6% - VY02 = v 0 — (2K v; < 0, X V).

For n=1, a linear homogeneous problem is obtained for the calculation of the critical parameters Rey, ¢y,
and the eigenfunction. We introduce the notation

ey s = exp i{kmt = saz), Wy o = (v&9 (1), h&s(r), o® (r)
and write the solution in the form
vy, By, @) = ﬁ(‘vi,131~1 - -\?1,1511 - Wi _8pemy + \{’71~—13—1-—1),

where g > 0 is the amplitude of autooscillations [6] and a bar over a quantity denotes its complex conjugate,
The parity with respect to z goes over into the parity with respect to s for the corresponding components of
the vector Wi s. Separating the variables r and z and introducing the notation W, 1 = (@, g,7), we obtain
directly from (2.2) for n = 1 the closed system of differential equations
Doy = —{q: + imge)/r — iag., Dgo = (imq, — qo)r — v,
D¢, = iaqg. — ve, Dg = Reg (imeg/ 3¢, — Qg0+ Voy.) — imiry, <+ iaye.
Dyg = Re, (imey/kg. — Vey,) — iag — (imy, — yg)ir. (2.3)

Dy, = Re, (Q.¢, — imey/Eqe) — im'rg = iay,.

vy = im/rg, — iagy, D = d/dz, z =r — E,
for which we seek a nontrivial solution satisfying the boundary conditions ¢ v = ¢y = ¢, =0 at x = 0 and
x = 1. Introducing the convenient normalization yz = 0.25 at x = 0 we note that for small ¢ the principal
part of the tangential stress pyy at the inner cylinder varies according to the law ppg = € cos wz cos m
(6 —Reycy/ét) with amplitude €g.

To construct the adjoint problem we multiply the first of Egs. (2.2) for n=1 scalarly by the solenoidal
vector ¥ which vanishes at r = ¢ and r =1 + ¢ and satisfies the same periodicity conditions. We then integrate
by parts over the limits £ <r = 1+£,0 =727/m, 0 Sz <27/ o with the weight factor r and throw out prod-
ucts of ¥ and derivatives with v, h;, and w,. As a result we obtain the adjoint problem

Rey (cp/E¥1 +— ¥ X Q) +-grad Q + rot A = 0, div ¥ = 0,
rot W 4+ Rey VXV = A, ¥ =0( =% | +§),

T

[{21

which after separating the variables 7 and z

(‘1’1 Q! A) = ("ll'u q, 2")el.'l
reduces to the ordinary differential equations
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Dy, = — (P, +-img )/r—iap,, Dyg=(imp, — $g)/r+Re, Vep,+1,, DY, =
=iy, — Mg, Dg = —im Re, cy/Bp, — Rey Qopo— im/rh, +inkg,
Dig = —im Reg ¢o/B, — iag 4 (imh, — Ag)/r, (2.4)
Dbk, = im Rey /&Py — Rey 9, + im/ rg - ik,
A, = (im/r 4+ Re, Vo), — iofeg

with the boundary conditions $ =95 =9y =0 at x =0 and x =1 and the auxiliary normalization condition
Ay = 0.25 at x = 0. The condition that the inhomogeneous problem (2.2} be solvable,
2n/a 2/ m 1+
[ ! (£, ) o1, rdrdidz =0 (n =2, 3,4, ...), (2.5)
0 0
shows that ¢; =0 for n =2 if the quantity
148 .
Ii= | (@, ¥)rdr
'&

is dlfferent from zero. Assuming that this condition is satisfied we seek the solution of problem (2.2) for
n = 2 to fit the right-hand side f, in the form

(ve, i, @y) = Bz(wo,oeo,o + Wye 4 Wz,z-gz,-z + Wy, +
+ “727—273-2-—2 + Wye€00 + \V2,ozz,o + W0 T Wo,z‘-'o,z)a (2.6)

where it is assumed that the components of the vectors Wi g have the same parity with respect to s as they
had with respect to z before the separation of variables. We note that a solution of the linear homogeneous
equation should be added to the right-hand side of Eq. (2.6) with a constant coefficient g', but as shown in [7]
for the general case of branching g' =0. The parity with respect to the second subscript enables us to limit
ourselves to finding only the four vector functions Wy 9, Wy 5, Wy o, and Wy ,. The components of the first
satisfy the equations

0,0) (0,0} (0,0) 0,0 0,0) 0,0)
Dvg = mz 0 /) + DOJ(Z )-— — A& P U(e = O (x = 0,1),
(0,0 0, 4 » ’ ) — . 0,0) 7
Dh(o,o) j— Re (Q 7] ) i l] 0)( 0)) ! (0,0) U(O 0) U(D 0) (0(0 0) ( ) 0 (2- )

(A(ro'o), Ag],()), 0) = v{l.1) W @D 4 VD % @) Ly, —1) 6(1.7_1) 4 v —1) % @—1),

The arbitrary constant in the determination of the total pressure is conveniehtly fixed by setting h®? =0atx=1,
For the components of the vector W, ; we obtain
Do? = — (P 4+ 2 imu§ ) r — 2iav®?, Du§ B2 = (2imv®? — o2 )r + P,
Dy, 22 — Ztow(2 g (2 2 , Dh(2:2) = 2im Reocolgu("z) + Re, (Q,vf;z LT 4 (0(2’2)) ZLm/ru)(2 2 AL 2105(9(2 2 A% +2)
Del? = 2im Reoc(,/E,v(2 2 _ Re, Voir? — 2iah®:2) L (2lmm(2 B — 0 P)ir 4+ A8, (2.8)
Dol? = — 2im Re, ¢/Evi® + Re, Q0% 4 2im/rh®? + 2iae®? — 432

o 2,2)

(2,2 (2.2
= 2im/rp®? — 2iawP? , A2 = v(LL x ), 129 = vf? =P =0 (z=0,1).

We find the components of the vector W, , by solving the problem

Do = — (> 4 2imv§ V) /r, Dv§” = (2imv®” — 6 O)r 4 o&?, (2.9)
2 ) 2,0 (2,0
DI — 2im R £+ Req (" + Vo) — 2imir®® 1. A2,
Do®® — — 2im Re, /&5 ” -+ Re,Q,v™Y + 2im/rh:0 — A5,

(2 0) _ 039 2,0) __ v?’O)E 0, (A(,Q’O), ABZ,O)’ 0) = v ¢ @ti—1 4 wh—1 ¢ gl

soop————————"0,52
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o Reg Co g Ca Realo, Imo,

3,930 103,52 0,29672 43.31 0,303 0,465 —0,3229
1,073 367,09 0,23007 7,846 0,236 0,0590 —0,2944
1,275 231,72 0,23042 40,33 —0,200 0,028 —0,2816
1,325 215,89 0,23231 94,01 —2.15 0,131  —0,2824
1,350 209,14 0,23333 115,2%¥ —3,88 0,180  —0,2830
1,600 165,58 0,24428 24,87* —0,472  0,1614 —0,2917
1,850 142,93 0,25472 11,45* —0,492  0,1973 —0,3004
1,950 136,65 0,25857 13,66 0,103  0,2103 —0,3034
2,300 121,58 0,27040 33.85 —0,077  0,2520 —0.3115
2,600 113,88 0,27852 63,74 —1,90 0,2847 —0,3159
2,700 111,99 0,28084 81,83* —5,65 0.2952 —0,3170
2,800 110,38 0,28296 20,09* —1,47 0.3055 —0.3179
3,000 107,82 0,28668 29,89 0,715 0,3258  —0,3192
5,000 106,95 0,30123 46,38 0,204 0,5139 —0,3320
6,600 120,66 0,30998 47,98 0,177 00,6389 —0.3584

with the boundary conditions v¢:? = Véz’m =0 at x=0 and x = 1. For the components of the vector W, , we
obtain the equations

2 D, s (02 3,2 0,2), (8,2
Dvﬁ.o") = — i:‘,”*l’,/r—zmvﬁ ’ ), DU(Q‘ - V(e )/r - 0)(: ' (2°10)
. 2 0,2 ; (0,2 | 0,2) (0,2 2
Di®? = 2ia0"? — P, DR0.D = Re, (Quuh” - Vel ®) + 2iqai™? L AL
; R )
Do = — Re, Vool P — 214k — 0¥ ) 1 402,
a9 9 . 2 2 .
DO)(:O'“) = BeUsz(TO") -+ 210((;)5.0") —_ AéO,Z)’ (1)(,0") = 210{,1;&0'2),

- — Bl 2 2
A @D = v 5 b Lyt @D, 0D = P = D — 0 (2=0,1),

where it turns out that the quantities v{%?, v&2 162 and 02 are real and v¥*?, wg),z)’ and w{? are
purely imaginary. Setting n = 3 in the solvability condition (2.5) we obtain an equation for the real constants
and c,:
pan 2 ime Iy + B, = I,
13
I, = s (. yrdr, I; =

3

1%

[ (@ @+vxV, g,

g =v ED e 00 Ly D Ma@d Ly GDxe 0D 4y G0y e®0 .
R N R L ) o D Ly 0 Xe LU Ly GOX g G-,
from which we find
B* = d, = Real (I,]))/Real (I],), ¢, = d, = Im (I,I,)/m Real (,1,).

If the constant d; is greater than zero, autooscillations branch off for Re > Re (supercritical auto-
ascillations). For dy < 0 the equation for 32 becomes inconsistent. In this case it is necessary to consider
subcritical values of the Reynolds number, setting Re = Re, — €? in the derivation of the chain of equations
(2.2). As a consequence I3 — —I;. This gives the correct value of the square of the amplitude corresponding

now to subcritical autooscillations. Both variants of the branching can be described simultaneously if we
evaluate the constants d; and d, starting from the assumption Re = Re, + €’ and then setting

B =|di /% c, = d,sgn d;, Re = Rey + ¢*sgn d,.

To investigate the stability of circular Couette flow and branching of autooscillations we use the method
of linearization. The validity of linearization in problems of the stability of stationary and periodic motions
of a fluid is shown in [8-10]. This leads to the spectral problem

-ou — Reg c/Eug 4~ Re (Q<u - rot uX V) - grad p + rot rot u = 0,
divu=0,a=0(@F=¢§ 1+ §

for Couette flow, and to the problem

o'w’ — cup -+ Re (@ x W' £ rotuw’ 3 V) o x u <+ rotu’ X v 4- grad p’ +
) +rotrote’ =0, dive’ =0,u’ =0 (r=E 11§

for the autooscillation regime. Here ¢, v, and w are determined according to (2.1). Applying the perturbation
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method [7] for Reynolds numbers close to the critical value we find the eigenvalues of ¢ and o':
6 = 0, (Re — Re,) + 0 (|[Re — Re,|?), o' = ase? - 0(e4), (2.11)
0, = — I,/I,, Realoy = — Real 6,sgn d;, Re = Re, -+ e?sgn d;.

The stability of the corresponding flow can be judged from the real parts of these.
Suppose the following conditions are satisfied:
Real 0, > 0, Real (I,1,) 7 0, Real (I ;) = 0, (2.12)

then on the basis of Theorems 2.2 and 3.1 of [6, 7] it can be stated that for Re > Re, Couette flow loses
stability and at the point Re = Re, the autooscillating regime having the form of azimuthal waves branches
off from it. The branching out of a cycle occurs in the supercritical region Re > Rey if d; > 0 or in the sub-
critical region Re < Re, if dy < 0. It is clear from (2.11) that supercritical autooscillations are stable and
subcritical oscillations unstable.

3. Results of Calculations

The secondary wave regime was calculated on an ODRA-1204 computer for mode m = 1, fixed values
of the parameters £ =1, p =—0.45, and various longitudinal wave numbers 1 =« =< 7 at 58 points altogether.
The critical values of the parameters Re, and ¢, for m =1 and m =0 were accurately calculated in ad-
vance by direct numerical integration of (2.3). The law of motion for ¢ was used together with Newton's
method for solving a system of two transcendental equations by approximating partial derivatives by finite
differences. The results of the calculations are shown in Fig. 1, where the numbers 1 and 2 denote the curves
for Reg(a) and cy(a) for m = 1; the number 3 marks the neutral curve for Re (o) corresponding to a rota-
tionally symmetric disturbance with m =0, ¢y = 0. It is clear from Fig. 1 that for the chosen ratio of the
angular velocities of the cylinders nonrotationally symmetric disturbances are more dangerous than those
which are rotationally symmetric; on curve 1 (m = 1) the minimum is reached at the point o = 3.93, Re( =
103.52, and on curve 3 (m = 0) at the point ¢ = 4.51, Re = 105.95. After finding the eigenvalues of Re, and
¢y the boundary-value problems (2.3), (2.4}, (2.7)-(2.10) were solved and the quantities 8, ¢;, 0;, and Real
oj were calculated.

Conditions (2.12) were satisfied at the same time. In view of the small value of the Reynolds numbers
all the boundary-value problems were solved by taking linear combinations of particular solutions obtained
by integrating several Cauchy problems from the point x =1 to the point x = 0 by the standard fourth-order
Runge—Kutta method with automatic step selection. The boundary condition on the inner cylinder requiring
the vanishing of the azimuthal component of the velocity for the homogeneous problems (2.8), (2.4) was re-
placed by the normalization condition. The accuracy of the previously found eigenvalues determined how well
the discarded boundary condition was satisfied. To make the programming more convenient the evaluation of
the integrals I, I,, and I; was reduced to a Cauchy problem with a zero initial condition on the outer cylin-
der. The method described for calculating autooscillations required the simultaneous integration of 61 first-
order differential equations in the final stage.

The dependence of the constant 8 on « is shown graphically in Fig. 2, where for clarity the positive
values of g corresponding to suberitical autooscillations are plotted below the o axis. The graph has two
asymptotes of the form « = aa. As these points are approached the constant 8 increases without bound, be-
having as g ~ const |a@ —a4 |-1/2 At the two points o = ai (k = 1,2) the amplitude vanishes: g ~ consty |a=
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okl 1/2(a——czk,k=1, 2)., At these four exceptional points the conditions (2.12) are not satisfied and expan-
sions (2.1) no longer hold. Some numerical results are shown in Table 1, where an asterisk denotes a num-
ber corresponding to the subcritical case. The minimum is the most interesting point of the neutral curve,
since the first loss of stability occurs in the passage through this point. There is a branching off of a stable
periodic regime, a weak excitation of autooscillations of the type of azimuthal waves with parameters listed
in the first row of Table 1. The graphs of certain components of the solution corresponding to the numbers
in this row are shown in Fig. 3: 1) Real 0 p; 2) Imgy; 3) Real ¢z; 4) Im ¢z,and Fig, 4: 1) Real ¢y;

2) Imgg; 3) 100 v,
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